TRIFLURALIN

Collaborative Study

Full Scale Collaborative Study for the Determination of Trifluralin in TC and EC formulation by HPLC

Report to CIPAC by Shenyang SYRICI Testing Co., Ltd. No.8, Shenliao East Road, Tiexi District Shenyang 110021, P.R. China

May 2022

Content

- 1. PARTICIPANTS
- 2. ACTIVE INGREDIENT: GENERAL INFORMATION
- 3. SAMPLES
- 4. METHOD
- 4.1 Scope
- 4.2 Principle
- 4.3 Procedure
- 5. REMARKS OF THE PARTICIPANTS
- 5.1 Analytical Condition
- 5.2 Remarks
- 6. EVALUATION AND DISCUSSION
- 6.1 Data Review
- 6.2 Statistical results
- 7. CONCLUSIONS

1. Participants

In November 2021, Information Sheet No. 329 was sent out by the CIPAC Secretary inviting members to participate in a large-scale collaborative study on the determination of Trifluralin in TC and EC formulation by HPLC. 22 laboratories responded to participate in the trial.

By mid of April 2022, 20 of the 22 laboratories provided their results, and 2 of them didn't provide due to the failure of customs clearance of the samples. The results of the 20 participants are presented in the following sections.

All the participants are listed in the table below whereas lab numbers in the result tables were assigned, chronologically, based upon receipt of results.

Contact	Lab	Country/Region
Vanessa	Walloon Agricultural Research Centre (CRA-W)	Belgium
Lecocq	Batiment Rachel Carson Rue du Bordia,115030 Gembloux Belgique	Europe
	Belgium	
Olga Novakova	National Reference Laboratory	Czech Republic
	Department of Testing Plant Protection Products	Europe
	Zemědělská 1a, 613 00 Brno	
	Czech Republic	
Zhang Juntao	Jiangsu EverTest Co., Ltd.	China
	31-1 Hengjing Road, Qixia District, Nanjing, Jiangsu, P.R. China	Asia
Sagar	Ross Lifescience	India
Patil	Dy. TFM, Lead Project Co-Ordinator.	Asia
	Ross Lifescience Pvt. Ltd.	
Angela Santilio	National Institute of Health (Istituto Superiore di Sanità)	Italy
	Department of Environmental and Health	Europe
	ECASS Section - Pesticide Unit	
Takashi	FAMIC	Japan
Watanabe	Japan	Asia
Maureen	Test Center of Shandong Weifang Rainbow Chemical Co., Ltd.	China
Tian	Binhai Economic Development Area, Weifang, Shandong, China	Asia
	China	
Judy	Shandong Binnong Technology Co., Ltd.	China
	No.518, Yongxin Road, Binbei Town, Binzhou, Shandong, China	Asia

Table 1: list of participants

Javier	Agri-Food Arbitration Laboratory	Spain
García-Hierro	Ministry of Agriculture, Fisheries and Food	Europe
Navas	Aguarón, 13. E28023 Madrid	
	Spain	
Elen	Benaki Phytopathological Institute	Greece
Karasali	Benaki Phytopathological Institute	Europe
	8 Stefanou Delta Street, Kifissia, Athens, 14561 Greece.	
Brenda	Ministerio de Desarrollo Agropecuario	Panama
Checa	Dirección Nacional de Sanidad Vegetal	South America
	Panama	
Lajos	Pesticide Analytical National Reference Laboratory	Hungary
Benke	Velence H-2481 Velence, Ország út 23, Hungary	Europe
Christian	Syngenta Crop Protection AG	Switzerland
Mink		Europe
Aysel	Plant Protection Central Research Institute	TURKEY
TAKKABULAN	Gayret Mah. Fatih Sultan Mehmet Bul. No:66 Yenimahalle	Asia
	Ankara, TURKEY	
Huang	Anhui Fengle Agrochemical Co., Ltd.	China
Liang	Hefei Circular Economy Demonstration Park, Feidong County, Hefei	Asia
	City, Anhui Province 231600	
	China	
Shi	National Center for Pesticide Quality Supervision and Inspection	China
Kaiwei	(Beijing),	Asia
	Institute for the Control of Agrochemicals,	
	Ministry of Agriculture and Rural Affairs , P. R. China	
Shang Wei	Laprode (ZHE JIANG) Analysis Co., Ltd.	China
		Asia
Theo. Derijk	Wageningen Food Safety Research (WFSR)	Netherlands
	Postbus 230, 6700 AE Wageningen, Akkermaalsbos 2 (gebouw 123),	Europe
	6708 WB Wageningen	
Hou	Pesticides Test Laboratory of Shenyang SYRICI Testing Co., Ltd.	China
Chunqing	No.8, Shenliao East Road, Tiexi District Shenyang 110021, P.R. China	Asia
Estela	Federal Laboratory of Animal and Plant Health and Inspection -	Brazil
Bonilha	LFDA/SP	South America
	Ministry of Agriculture, Livestock and Food Supply	
	Rua Raul Ferrari, sem número, Jardim Santa Marcelina	

2. Active Ingredient: General Information

Chemical name: α, α, α -trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine(IUPAC)

2, 6-dinitro-N, N-dipropyl-4-(trifluoromethyl)benzenamine

ISO common name: Trifluralin

CAS-No.: 1582-09-8

Structure:

Molecular mass: 335.3 g/mol

Empirical formula: C13H16F3N3O4

Activity: Herbicide

3. Samples

The following 5 batches of test samples and analytical standard were sent to the participants:

- 1. Trifluralin TC-1, Batch Number: 21090204390
- 2. Trifluralin TC-2, Batch Number: 21090404393
- 3. Trifluralin EC-1, Batch Number: 2021090101
- 4. Trifluralin EC-2, Batch Number: 2021093001
- 5. Trifluralin EC-3, Batch Number: 2021102701

Trifluralin, reference standard (purity 99.2 %w/w)

4. Method

4.1 Scope

The determination of Trifluralin active ingredient content in TC and EC formulation.

4.2 Principle

Trifluralin is determined by reverse phase high performance liquid chromatography using UV detection at 280 nm and external standardization.

4.3 Procedure

Each sample was analyzed using four independent determinations. The samples were analyzed on two different days, each day involving duplicate injections of duplicate weights. Both test and reference solutions were freshly prepared on each day. The four injections of each test solution were of bracketed by double injections the calibration solution. The average response factor, used to calculate the amount of Trifluralin in the test solution, was calculated using the injection before and after the injections of test solution.

5. Remarks of the Participants

5.1 Analytical condition

Tuble 2. 7 marytical contaitions asca by the participants

Lab No.	HPLC Model	Column	FR (mL/min)	СТ (ºС)	WL (nm)	lnj. vol. (μL)	Mobile Phase Acetonitrile /Water v/v
1	Agilent 1100 Series	Agilent Zorbax Eclipse XDB-C18, 5 µm, 150 x 4.6 mm i.d.	1.0	25	280	5	77/23
2	Agilent Infinity 1290	Zorbax Extend C18, 150 x 4.6 mm, 5 um	1.0	25	280	5	77/23
3	Agilent 1260 Infinity II	150mm*4.6mm,5µm C18	1.0	25	280	5	77/23
4	Agilent Technologies/ 1260 Infinity	Eclipse Zorbax XDB-C18 4.6 mm x 150	1.0	25	280	5	77/23
5	Perkin Elmer Flexar	ar Zorbax Eclipse XDB C18 4.6 x 250mm; 5 um		25	280	<mark>10</mark>	77/23
6	SHIMADZU / LC-20AD	ZORBAX Eclipse XDB-C18, 150mm x 4.6 mm, 5 µm	1.0	25	280	5	77/23
7	Agilent 1260 InfinIty II	Agilent Eclipse XDB-C18 4.6* <mark>250mm</mark> *5µm	1.0	25	280	5	77/23
8	Agilent Technologies Pte. Ltd DAD: DEAEK00202/G7117C	XBridge Ò C18 5 μm (150 mm x 4.6 mm)	1.0	25	280	5	77/23
9	HPLC Agilent 1260 Infinity II	Phenomenex Gemini 5µ C18 110 A	1.0	25	280	5	77/23
10	HPLC Shimadzu LC-20AB	Nucleodur C18 Gravity (150/4.6 x 5µm)	<mark>1.3</mark>	<mark>30</mark>	280	5	77/23
11	1260 Infinity	Eclipse XDB-C18 5µm	1.0	25	280	5	77/23

		4.6x150mm					
12	Dionex HPLC system	Eclipse Zorbax XDB-C18 <mark>250 x 3mm</mark> , 5µm	<mark>0.7</mark>	25	280	5	77/23
13	Thermo Scientific / Ultimate 3000	Agilent Zorbax Eclipse XDB	<mark>1.5</mark>	25	280	5	77/23
14	AGILENT HPLC 1100 SERIES	Agilent Eclipse Zorbax XDB-C18 5 150 x 4.6 mm, 5 um	1.0	25	280	5	77/23
15	Agilent1260 ZORBAX SB-C18 4.6×150mm 5 um		1.0	25	280	5	77/23
16	Agilent 1200 DAD	Eclipse XDB-C18 <mark>250</mark> *4.6 mm,5 μm	1.0	25	280	5	77/23
17	Agilent 1260 (DAD)	Zorbax SB-C18 150mm*4.6mm*5 µm	1.0	25	280	<mark>1.0</mark>	77/23
18	Shimadzu LC-40DXR	Eclipse XDB-C18	<mark>0.6</mark>	25	280	<mark>10</mark>	<mark>75/25</mark>
19	Agilent1260 Infinity II XDB-C18 4.6×150mm 5 µm		1.0	25	280	5	77/23
20	Agilent Infinity 1260	Eclipse Zorbax XDB-C18 150 x 4.6 mm, 5 um	1.0	25	280	5	77/23

Several participants provided comments about the method performance and also made a note of any deviations from the method:

Table 3:	Remarks f	from	participants
----------	-----------	------	--------------

Lab	Comments
No	
4	Remarks: The Trifluralin content was found within specification limit for
	TC and EC. 2. Retention time varied from method given.
6	Remarks: 1. Run time was changed from 8.0 to 15.0 min. Because the retention time for trifluralin at our laboratory (approx. 7.2 min) is longer than the typical one (approx. 5.2 min). As a comment on the draft method, "Run time: 8.00 min" is not consistent with the three typical HPLC-chromatograms listed on pages 5 to 6, which were recorded up to 15 min. Those times should be the same. 2. "221/TC/M" referenced in the method of analysis for TRIFLURALIN EC seems to be a typographical error for "183/TC/M". "221/TC/M" is the method of analysis for the method.
7	1. Approximately weigh 50mg of trifluralin standard respectively into
	50ml volumetric flask.
	2. Approximately weigh containing trifluralin 50mg of trifluralin TC or EC

	into 50ml volumetric flask.
10	Remarks: The analytical standard and the technicals (TC1 and TC2) were not powders. They were a single solid mass. A glass rod was used in order to break and homogenize the solid materials
12	Remarka, Experimenta were performed three times.
13	are shown here. Results of samples TC-1 and TC-2 as well as sample morphology (agglomeration, wet appearance) indicate inhomogeneity of the sample material.
14	Remarks: The samples were studied according to the method. Especially the sample preparation step of the method was very practical
	and did not take much time. There were no problems in the analysis.
	Run time was worked as 8 minutes. In the method sent, retention time is
	given as approximately 5.2 minutes. However, in our all studies, the
	peak of trifluralin was around 6.3 minutes.
17	Remarks: 1.repeated the same exercise on different day(Day 1 on
	February 11,2022 ,Day 2 on February 14,2022)by different person.
	2.The retention time is about 6.5min.
	3.Syetem equilibration: calibration solution is injected repeatedly, and
	the deviation of relative retention time and the response factors is less
20	Remarks: The procedure described at "trifluralin analytical method
	(final)" was followed faithfully. The retention time and peak area
	obtained from two consecutive CA calibration solution injections deviate
	was less than 1.0%. The response factor for CB solution deviate was
	less than 1.0% from that for calibration solution CA. For EC samples, the
	concentration information 45.4 (w%), indicated on the safety data sheet
	that accompanied the samples, was considered to calculate the mass
	necessary to obtain 50mg of trifluralin (s mg) in the volumetric flask
	(50mL). For the TC samples, the concentration information 96% (W%),
	indicated on the safety data sheet that accompanied the sample, was
	(s ma) in the volumetric flask (50ml). The retention time was
	approximately 6 1/6 2min

6. Evaluation and Discussion

6.1 Data Review

The data obtained from each laboratory was visually reviewed to determine if there were any significant chromatography differences, from what was expected, which might affect the analytical results. In summary it can be stated that the method deviations, noted by the participants, were deemed not to affect the analytical results significantly and therefore all data sets from 20 participating laboratories were included within the statistical assessment.

6.2 Statistical results

The statistical evaluation of the data was accomplished following the "Guidelines for CIPAC Collaborative Study Procedures for Assessment of Performance of Analytical Methods", according to DIN ISO 5725. The testing for outliers/stragglers of the laboratory mean values were performed according to Grubbs/ Cochran test on a 1%/5% significance level, respectively.

In the tables 4-11and figures 1-5, respectively, the full set of 20 laboratories are reported. Laboratory 4 three times was identified as outliers of EC-1,EC-2,EC-3 according to Grubbs test. And lab 5 for TC-1, lab 5 and 6 for TC-2, lab 2,5 and 18 for EC-1, lab 5,11 and 18 for EC-2; lab 5, 6 and 18 for EC-3 were identified as outlier according to Cochran test. In the table 12 and figures 6-10, the statistical data without the above outliers was reported. The Horwitz Ratio (HorRat) was found within the desired range (≥ 0.3 but ≤ 1.0).

Results from all the 20 participants

All results are given in g/kg

Lab	Da	y 1	Da	Day 2		Std.
Lab	А	В	А	В	g/kg	Dev.
1	989.6	986.2	982.2	986.0	986.0	3.0243
2	981.3	981.3	987.8	986.5	984.2	3.4189
3	980.4	977.6	978.4	978.8	978.8	1.1776
4	965.3	966.2	965.3	966.6	965.9	0.6557
<mark>5*</mark>	1000.7	1014.9	<mark>981.5</mark>	<mark>982.0</mark>	<mark>994.8</mark>	<mark>16.1198</mark>
6	984.5	984.6	983.7	991.4	986.1	3.5893
7	978.2	980.6	984.2	984.1	981.8	2.9125
8	987.2	985.6	984.5	985.9	985.8	1.1106
9	980.9	982.5	977.9	972.1	978.4	4.5822
10	978.3	975.8	984.2	984.8	980.8	4.4275
11	987.4	988.5	982.5	986.7	986.3	2.6235
12	980.0	978.3	979.4	981.1	979.7	1.1690
13	979.7	990.6	988.4	981.8	985.1	5.2022
14	967.6	968.3	965.7	962.6	966.1	2.5489

Table 4 Results of TC-1

15	983.8	983.0	984.9	982.9	983.7	0.9256
16	986.6	979.0	981.6	983.0	982.6	3.1681
17	984.9	987.1	985.6	986.9	986.1	1.0532
18	976.3	975.7	971.4	975.6	974.8	1.7951
19	982.8	983.1	982.7	983.1	982.9	0.2062
20	987.4	990.8	985.7	985.0	987.2	2.5876

* means Cochran outliers

Table 5 Results of TC-2

Lab	Da	y 1	Da	y 2	Mean	Std.
Lab	А	В	А	В	g/kg	Dev.
1	987.0	978.4	980.3	983.5	982.3	3.7745
2	973.9	970.7	978.3	974.1	974.3	3.1172
3	976.7	978.5	977.5	979.0	977.9	1.0275
4	967.6	964.0	965.6	964.9	965.5	0.8732
<mark>5*</mark>	<mark>965.0</mark>	<mark>974.4</mark>	<mark>995.0</mark>	<mark>967.1</mark>	<mark>975.4</mark>	<mark>13.6895</mark>
<mark>6*</mark>	<mark>982.0</mark>	<mark>980.8</mark>	<mark>988.2</mark>	1001.1	<mark>988.0</mark>	<mark>9.3003</mark>
7	981.3	980.3	985.2	981.3	982.3	2.5891
8	985.3	986.7	985.0	986.5	985.9	0.8500
9	982.5	979.1	974.9	970.2	976.7	5.3194
10	976.3	979.7	974.8	978.7	977.4	2.2322
11	990.9	986.5	981.8	982.2	985.4	4.2681
12	978.3	981.3	981.4	981.3	980.6	1.5174
13	994.0	985.4	989.5	991.4	990.1	3.6216
14	962.4	960.9	968.1	967.3	964.7	3.5612
15	982.6	981.4	984.1	982.4	982.6	1.1147
16	983.5	979.1	982.7	983.8	982.3	2.1670
17	984.6	986.8	986.3	984.8	985.6	1.0905
18	979.7	977.0	975.5	976.5	977.2	2.2546
19	982.7	982.9	982.8	982.7	982.8	0.0957
20	985.6	984.2	985.2	980.3	983.8	2.4226

* means Cochran outliers

Table 6 Results of EC-1

Lah	Da	y 1	Da	y 2	Mean	Std.
Lab	А	В	А	В	g/kg	Dev.
1	460.8	461.3	459.6	462.6	461.1	1.2321
<mark>2*</mark>	<mark>456.7</mark>	<mark>457.2</mark>	<mark>462.1</mark>	<mark>472.7</mark>	<mark>462.2</mark>	7.4276
3	452.6	454.7	453.4	453.8	453.6	0.8732
4	482.5	480.7	481.6	481.2	481.5	0.7375
<mark>5*</mark>	<mark>463.6</mark>	<mark>457.8</mark>	<mark>462.2</mark>	<mark>483.3</mark>	<mark>466.7</mark>	11.3229

6	458.8	459.2	460.5	460.6	459.8	0.8939
7	460.8	462.5	458.5	457.3	459.8	2.3258
8	462.6	461.6	461.1	462.5	462.0	0.7234
9	453.6	455.5	452.0	453.2	453.6	1.4406
10	453.6	454.6	459.6	455.8	455.9	2.6457
11	457.4	458.2	457.4	458.6	457.9	0.6000
12	460.5	457.4	460.3	457.0	458.8	1.8536
13	465.2	466.5	464.1	467.9	465.9	1.6383
14	461.4	461.2	460.2	460.5	460.8	0.5679
15	456.7	454.8	456.9	455.3	455.9	1.0340
16	459.5	454.4	460.6	460.5	458.8	2.9422
17	458.5	460.4	463.7	460.8	460.8	2.1739
<mark>18*</mark>	<mark>477.3</mark>	<mark>477.8</mark>	<mark>453.8</mark>	<mark>454.0</mark>	<mark>465.7</mark>	<mark>13.6835</mark>
19	460.9	461.5	461.4	462.1	461.5	0.4924
20	454.5	455.5	456.6	457.0	455.9	1.1284

* means Cochran outliers

Table 7 Results of EC-2

Lab	Da	y 1	Da	y 2	Mean	Std.
Lab	А	В	А	В	g/kg	Dev.
1	459.8	461.3	457.7	458.6	459.4	1.5588
2	460.2	458.8	466.5	460.5	461.5	3.4147
3	452.0	453.8	453.4	453.4	453.2	0.7895
4	479.7	480.2	478.7	476.3	478.7	1.7328
<mark>5*</mark>	<mark>464.6</mark>	<mark>466.1</mark>	<mark>475.0</mark>	<mark>471.4</mark>	<mark>469.3</mark>	<mark>4.8037</mark>
6	456.7	456.9	459.6	457.4	457.7	1.3329
7	459.1	463.7	460.0	460.8	460.9	1.9916
8	456.9	457.1	459.0	459.8	458.2	1.4259
9	455.5	454.1	452.2	453.9	453.9	1.3525
10	458.8	461.0	460.9	463.0	460.9	1.7154
<mark>11*</mark>	<mark>463.9</mark>	<mark>460.5</mark>	<mark>453.7</mark>	<mark>451.2</mark>	<mark>457.3</mark>	<mark>5.8869</mark>
12	457.9	458.6	458.0	459.3	458.5	0.6455
13	462.8	462.2	464.2	460.1	462.3	1.7037
14	464.9	458.9	460.5	466.0	462.6	3.4131
15	453.2	453.4	455.5	452.6	453.7	1.2633
16	458.8	458.1	458.7	462.1	459.4	1.8099
17	462.9	461.6	461.8	463.9	462.6	1.0661
<mark>18*</mark>	<mark>479.1</mark>	<mark>478.8</mark>	<mark>456.5</mark>	<mark>455.1</mark>	<mark>467.4</mark>	<mark>13.3784</mark>
19	460.6	460.4	460.5	460.6	460.5	0.0957
20	455.3	455.1	458.7	457.0	456.5	1.6820

* means Cochran outliers

Lab	Da	y 1	Da	y 2	Mean	Std.
Lab	Α	В	А	В	g/kg	Dev.
1	461.7	467.9	460.3	463.3	463.3	3.3025
2	458.1	457.5	464.3	463.3	460.8	3.4967
3	455.0	453.4	454.4	454.1	454.2	0.6652
4	479.3	480.2	479.2	480.4	479.8	0.6557
<mark>5*</mark>	<mark>459.5</mark>	<mark>457.9</mark>	<mark>465.2</mark>	<mark>469.0</mark>	<mark>462.9</mark>	<mark>5.1335</mark>
<mark>6*</mark>	<mark>476.7</mark>	<mark>460.1</mark>	<mark>458.9</mark>	<mark>467.1</mark>	<mark>465.7</mark>	<mark>8.1764</mark>
7	459.5	461.8	457.4	458.3	459.3	1.9053
8	460.9	459.5	461.5	460.8	460.7	0.8421
9	456.4	456.4	457.0	457.7	456.9	0.6185
10	459.3	457.6	456.8	457.2	457.7	1.0996
11	461.7	463.2	458.4	461.5	461.2	2.0149
12	459.6	459.7	461.3	459.9	460.1	0.7932
13	461.8	467.5	465.3	464.8	464.9	2.3473
14	461.4	461.6	459.8	463.7	461.6	1.6008
15	455.6	457.2	455.0	455.8	455.9	0.9309
16	456.8	465.1	461.1	461.6	461.2	3.4025
17	460.3	460.9	459.1	461.6	460.5	1.0595
<mark>18*</mark>	<mark>479.5</mark>	<mark>479.1</mark>	<mark>461.2</mark>	<mark>461.0</mark>	<mark>467.4</mark>	<mark>13.3784</mark>
19	463.1	463.0	462.2	462.6	462.7	0.4113
20	459.1	459.3	458.9	461.4	459.7	1.1615

Table 8 Results of EC-3

* means Cochran outliers

Table 9 Results of all 5 batches

Lab	Trifl	uralin	Trifl	uralin	Trif	uralin	Trifl	uralin	Trifl	uralin
No.	Т	C-1	Т	C-2	E	C-1	E	C-2	E	C-3
	D 1	D 2	D1	D 2	D 1	D 2	D 1	D 2	D 1	D 2
1	987.9	984.1	982.7	981.9	461.1	461.1	460.6	458.2	464.8	461.8
2	981.3	987.2	972.3	976.2	457.0	467.4	459.5	463.5	457.8	463.8
3	979.0	978.6	977.6	978.3	453.7	453.6	452.9	453.4	454.2	454.3
4	965.8	966.0	965.8	965.3	481.6	481.4	480.0	477.5	479.8	479.8
5	1007.8	981.8	969.7	981.1	460.7	472.8	465.4	473.2	458.7	467.1
6	984.6	987.6	981.4	994.7	459.0	460.5	456.8	458.5	468.4	463.0
7	979.4	984.2	980.8	983.3	461.7	457.9	461.4	460.4	460.7	457.9
8	986.4	985.2	986.0	985.8	462.1	461.8	457.0	459.4	460.2	461.2

9	981.7	975.0	980.8	972.6	454.5	452.6	454.8	453.1	456.4	457.4
10	977.1	984.5	978.0	976.8	454.1	457.7	459.9	462.0	458.5	457.0
11	988.0	984.6	988.7	982.0	457.8	458.0	462.2	452.5	462.5	460.0
12	979.2	980.3	979.8	981.4	459.0	458.6	458.3	458.7	459.7	460.6
13	985.2	985.1	989.7	990.5	465.9	466.0	462.5	462.2	464.7	465.1
14	968.0	964.2	961.7	967.7	461.3	460.4	461.9	463.3	461.5	461.8
15	983.4	983.9	982.0	983.3	455.8	456.1	453.3	454.1	456.4	455.4
16	982.8	982.3	981.3	983.3	457.0	460.6	458.5	460.4	461.0	461.4
17	986.0	986.3	985.7	985.6	459.4	462.3	462.3	462.9	460.6	460.4
18	976.0	973.5	978.4	976.0	477.6	453.9	479.0	455.8	479.3	461.1
19	983.0	982.9	982.8	982.8	461.2	461.8	460.5	460.6	463.1	462.4
20	989.1	985.4	984.9	982.8	455.0	456.8	455.2	457.9	459.2	460.2

Table 10 Results of Mean values of all 5 batches

Lab No	Trifluralin TC-1	Trifluralin TC-2	Trifluralin EC-1	Trifluralin EC-2	Trifluralin EC-3
1	986.0	982.3	461.1	459.4	463.3
2	984.2	974.3	462.2	461.5	460.8
3	978.8	977.9	453.6	453.2	454.2
4	965.9	965.5	481.5	478.7	479.8
5	994.8	975.4	466.7	469.3	462.9
6	986.1	988.0	459.8	457.7	465.7
7	981.8	982.3	459.8	460.9	459.3
8	985.8	985.9	462.0	458.2	460.7
9	978.4	976.7	453.6	453.9	456.9
10	980.8	977.4	455.9	460.9	457.7
11	986.3	985.4	457.9	457.3	461.2
12	979.7	980.6	458.8	458.5	460.1
13	985.1	990.1	465.9	462.3	464.9
14	966.1	964.7	460.8	462.6	461.6
15	983.7	982.6	455.9	453.7	455.9
16	982.6	982.3	458.8	459.4	461.2
17	986.1	985.6	460.8	462.6	460.5
18	977.2	974.8	465.7	470.2	467.4

19	982.9	982.8	461.5	460.5	462.7
20	987.2	983.8	455.9	456.5	459.7

Table 11 Summary of the statistical evaluation (20 labs)

	Trifluralin TC-1	Trifluralin TC-2	Trifluralin EC-1	Trifluralin EC-2	Trifluralin EC-3
x _m [g/kg]	981.96	979.91	460.91	460.86	461.82
x _m [%]	98.20	97.99	46.09	46.09	46.18
L	20	20	20	20	20
S _r	4.52	4.50	4.54	3.33	4.06
S _R	7.79	7.76	7.28	6.74	6.37
r	12.67	12.60	12.71	9.334	11.37
R	21.80	21.72	20.37	18.86	17.82
RSD _R	0.79	0.79	1.58	1.46	1.38
RSD _R	1.40	1.40	1.50	1.50	1.50
(Hor)	1.42	1.42	1.59	1.59	1.59
HorRat	0.56	0.56	0.99	0.92	0.87

xm = total mean value

L = number of laboratories

sr = repeatability standard deviation

 s_R = reproducibility standard deviation

r = repeatability limit

R = reproducibility limit

RSD_R = relative standard deviation of reproducibility

 $RSD_{R (Hor)}$ = Horwitz Value according to Horwitz equation

HorRat = Horwitz Ratio (RSD_R / RSD_R (Hor))

Full set of 20 participants:

Fig. 1 Trifluralin tech. sample - 1 (Trifluralin TC-1)

Fig. 2 Trifluralin tech. sample - 2 (Trifluralin TC-2)

Fig. 3 Trifluralin EC sample - 1 (Trifluralin EC-1)

Fig. 4 Trifluralin EC sample - 2 (Trifluralin EC-2)

Outlier (Grubbs): lab 4 Outlier (Cochran): lab 5, 11 and 18

Fig. 5 Trifluralin EC sample - 3 (Trifluralin EC-3)

	Trifluralin TC-1	Trifluralin TC-2	Trifluralin EC-1	Trifluralin EC-2	Trifluralin EC-3
x _m [g/kg]	981.2	979.8	458.9	458.9	460.0
x _m [%]	98.12	97.98	45.89	45.89	46.00
L	19	18	16	16	16
S _r	2.81	2.70	1.60	1.79	1.89
S _R	6.75	7.04	3.58	3.52	3.21
r	7.86	7.55	4.47	5.00	5.30
R	18.89	19.70	10.01	9.84	8.99
RSD _R	0.69	0.72	0.78	0.77	0.70
RSD _{R (Hor})	1.42	1.42	1.59	1.59	1.59
HorRat	0.48	0.51	0.49	0.48	0.44

Table 12 Summary of the statistical evaluation (without outliers)

xm = total mean value

L = number of laboratories

sr = repeatability standard deviation

s_R = reproducibility standard deviation

r = repeatability limit

R = reproducibility limit

 RSD_R = relative standard deviation of reproducibility

RSD_{R (Hor)} = Horwitz Value according to Horwitz equation

HorRat = Horwitz Ratio (RSD_R / RSD_{R (Hor)})

Fig. 6 Trifluralin tech. sample - 1 (Trifluralin TC-1)

Outlier: none

Fig. 7 Trifluralin tech. sample - 2 (Trifluralin TC-2)

Outlier: none

Fig. 8 Trifluralin EC sample - 1 (Trifluralin EC-1)

Mean value:	458.9 g/kg
S _r :	1.79
S _R :	3.52
RSD _R :	0.77
RSD _{R (Hor)} :	1.59
HorRat:	0.48
Outlier: none	

Fig. 10 Trifluralin EC sample - 3 (Trifluralin EC-3)

Outlier: none

7. Conclusions

A total of 20 laboratories have participated in this full scale collaborative study. And data from 20 participants have been included in the final data statistical. The data presented in the statistical summary show that this method led to HorRat values all within the required range. That is evidence for the fact that the present LC method is acceptable and suitable to produce reproducible results.

SYRICIT considers this method to be suitable for the intended purpose and recommends accepting it as a provisional CIPAC method for the determination of Trifluralin in TC and EC formulation.